Shear Stress Regulates Late EPC Differentiation via Mechanosensitive Molecule-Mediated Cytoskeletal Rearrangement
نویسندگان
چکیده
BACKGROUND Previous studies have demonstrated that endothelial progenitor cells (EPCs), in particular late EPCs, play important roles in endothelial maintenance and repair. Recent evidence has revealed shear stress as a key regulator for EPC differentiation. However, the underlying mechanisms regulating the shear stress-induced EPC differentiation have not been understood completely. The present study was undertaken to further investigate the effects of shear stress on the late EPC differentiation, and to elucidate the signal mechanism involved. METHODOLOGY/PRINCIPAL FINDING In vitro and in vivo assays revealed that cytoskeletal remodeling was involved in the shear stress-upregulated expression of endothelial markers vWF and CD31 in late EPCs, with subsequently increased in vivo reendothelialization after arterial injury. Moreover, shear stress activated several mechanosensitive molecules including integrin β1, Ras, ERK1/2, paxillin and FAK, which were all involved in both cytoskeletal rearrangement and cell differentiation in response to shear stress in late EPCs. CONCLUSIONS/SIGNIFICANCE Shear stress is a key regulator for late EPC differentiation into endothelial cells, which is important for vascular repair, and the cytoskeletal rearrangement mediated by the activation of the cascade of integrin β1, Ras, ERK1/2, paxillin and FAK is crucial in this process.
منابع مشابه
Interplay between Cytoskeletal Stresses and Cell Adaptation under Chronic Flow
Using stress sensitive FRET sensors we have measured cytoskeletal stresses in α-actinin and the associated reorganization of the actin cytoskeleton in cells subjected to chronic shear stress. We show that long-term shear stress reduces the average actinin stress and this effect is reversible with removal of flow. The flow-induced changes in cytoskeletal stresses are found to be dynamic, involvi...
متن کاملMitogen-activated protein kinase (ERK1/2) activation by shear stress and adhesion in endothelial cells. Essential role for a herbimycin-sensitive kinase.
Fluid shear stress modulates vascular function and structure by stimulating mechanosensitive endothelial cell signal events. Cell adhesion, mediated by integrin-matrix interactions, also regulates intracellular signaling by mechanosensitive events. To gain insight into the role of integrin-matrix interactions, we compared tyrosine phosphorylation and extracellular signal-regulated kinase (ERK1/...
متن کاملMechanical force mobilizes zyxin from focal adhesions to actin filaments and regulates cytoskeletal reinforcement
Organs and tissues adapt to acute or chronic mechanical stress by remodeling their actin cytoskeletons. Cells that are stimulated by cyclic stretch or shear stress in vitro undergo bimodal cytoskeletal responses that include rapid reinforcement and gradual reorientation of actin stress fibers; however, the mechanism by which cells respond to mechanical cues has been obscure. We report that the ...
متن کاملFluid shear triggers microvilli formation via mechanosensitive activation of TRPV6
Microvilli are cellular membrane protrusions present on differentiated epithelial cells, which can sense and interact with the surrounding fluid environment. Biochemical and genetic approaches have identified a set of factors involved in microvilli formation; however, the underlying extrinsic regulatory mechanism of microvilli formation remains largely unknown. Here we demonstrate that fluid sh...
متن کاملFlow Shear Stress Enhances the Proliferative Potential of Cultured Radial Glial Cells Possibly Via an Activation of Mechanosensitive Calcium Channel
Radial glial cells (RGCs) which function as neural stem cells are known to be non-excitable and their proliferation depends on the intracellular calcium (Ca2+) level. It has been well established that Inositol 1,4,5-trisphosphate (IP3)-mediated Ca2+ release and Ca2+ entry through various Ca2+ channels are involved in the proliferation of RGCs. Furthermore, RGCs line the ventricular wall and are...
متن کامل